Wiggle—Predicting Functionally Flexible Regions from Primary Sequence

by: jgu
July 19, 2007

Please describe the reason for abuse:

Peer-Reviewed Paper, View Original
The Wiggle series are support vector machine–based predictors that identify regions of functional flexibility using only protein sequence... » More
PLoS Comput Biol. 2006 Jul 14; 2(7):e90
Jenny Gu, Michael Gribskov, Philip E Bourne

Loading comments
  1. Doruker P, Jernigan RL (2003) Functional motions can be extracted from on-lattice construction of protein structures. Proteins 53: 174-181.
  2. Lu MY, Ma JP (2005) The role of shape in determining molecular motions. Biophys J 89: 2395-2401.
  3. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins?. Proteins 57: 433-443.
  4. Kern D, Zuiderweg ER (2003) The role of dynamics in allosteric regulation. Curr Opin Struct Biol 13: 748-757.
  5. Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32: 69-92.
  6. Cooper A, Dryden DT (1984) Allostery without conformational change. A plausible model. Eur Biophys J 11: 103-109.
  7. Post CB, Dobson CM, Karplus M (1989) A molecular-dynamics analysis of protein structural elements. Proteins 5: 337-354.
  8. Whitten ST, Garcia-Moreno EB, Hilser VJ (2005) Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proc Natl Acad Sci U S A 102: 4282-4287.
  9. Vergani B, Kintrup M, Hillen W, Lami H, Piemont E (2000) Backbone dynamics of Tet repressor alpha8intersectionalpha9 loop. Biochemistry 39: 2759-2768.
  10. Muller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Adenylate kinase motions during catalysis: An energetic counterweight balancing substrate binding. Structure 4: 147-156.
  11. Clarkson MW, Lee AL (2004) Long-range dynamic effects of point mutations propagate through side chains in the serine protease inhibitor eglin c. Biochemistry 43: 12448-12458.
  12. Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Progress of structural genomics initiatives: An analysis of solved target structures. J Mol Biol 348: 1235-1260.
  13. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52: 573-584.
  14. Narhi LO, Arakawa T, Aoki K, Wen J, Elliott S (2001) Asn to Lys mutations at three sites which are N-glycosylated in the mammalian protein decrease the aggregation of Escherichia coli-derived erythropoietin. Prot Eng 14: 135-140.
  15. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302: 1364-1368.
  16. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2: 173-181.
  17. Micheletti C, Carloni P, Maritan A (2004) Accurate and efficient description of protein vibrational dynamics: Comparing molecular dynamics and Gaussian models. Proteins 55: 635-645.
  18. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80: 505-515.
  19. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15: 144-150.
  20. Doruker P, Atilgan AR, Bahar I (2000) Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to alpha-amylase inhibitor. Proteins 40: 512-524.
  21. Temiz NA, Meirovitch E, Bahar I (2004) Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data. Proteins 57: 468-480.
  22. Chau PL, van Aalten DMF, Bywater RP, Findlay JBC (1999) Functional concerted motions in the bovine serum retinol-binding protein. J Comput Aided Mol Des 13: 11-20.
  23. Hayward S, Kitao A, Berendsen HJC (1997) Model-free methods of analyzing domain motions in proteins from simulation: A comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27: 425-437.
  24. Yon JM, Perahia D, Ghelis C (1998) Conformational dynamics and enzyme activity. Biochimie 80: 33-42.
  25. Berendsen HJC, Hayward S (2000) Collective protein dynamics in relation to function. Curr Opin Struct Biol 10: 165-169.
  26. Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins 33: 417-429.
  27. Hinsen K, Thomas A, Field MJ (1999) Analysis of domain motions in large proteins. Proteins 34: 369-382.
  28. Wriggers W, Mehler E, Pitici F, Weinstein H, Schulten K (1998) Structure and dynamics of calmodulin in solution. Biophys J 74: 1622-1639.
  29. Wilson MA, Brunger AT (2003) Domain flexibility in the 1.75 A resolution structure of Pb2+-calmodulin. Acta Crystallogr D Biol Crystallogr 59: 1782-1792.
  30. Wilson MA, Brunger AT (2000) The 1.0 A crystal structure of Ca(2+)-bound calmodulin: An analysis of disorder and implications for functionally relevant plasticity. J Mol Biol 301: 1237-1256.
  31. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB (1992) Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256: 632-638.
  32. Meador WE, Means AR, Quiocho FA (1992) Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257: 1251-1255.
  33. Beeser SA, Goldenberg DP, Oas TG (1997) Enhanced protein flexibility caused by a destabilizing amino acid replacement in BPTI. J Mol Biol 269: 154-164.
  34. Battiste JL, Li R, Woodward C (2002) A highly destabilizing mutation, G37A, of the bovine pancreatic trypsin inhibitor retains the average native conformation but greatly increases local flexibility. Biochemistry 41: 2237-2245.
  35. Zaman MH, Shen MY, Berry RS, Freed KF, Sosnick TR (2003) Investigations into sequence and conformational dependence of backbone entropy, inter-basin dynamics and the Flory isolated-pair hypothesis for peptides. J Mol Biol 331: 693-711.
  36. Eddy SR (1995) Multiple alignment using hidden Markov models. Proc Int Conf Intell Syst Mol Biol 3: 114-120.
  37. Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14: 846-856.
  38. Burgering MJM, Hald M, Boelens R, Breg JN, Kaptein R (1995) Hydrogen-exchange studies of the arc repressor: Evidence for a monomeric folding intermediate. Biopolymers 35: 217-226.
  39. Peng XD, Jonas J, Silva JL (1993) Molten-globule conformation of arc repressor monomers determined by high-pressure H-1-NMR spectroscopy. Proc Natl Acad Sci U S A 90: 1776-1780.
  40. Silva JL, Silveira CF, Correia A, Pontes L (1992) Dissociation of a native dimer to a molten globule monomer: Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol 223: 545-555.
  41. Bowie JU, Sauer RT (1989) Equilibrium dissociation and unfolding of the arc repressor dimer. Biochemistry 28: 7139-7143.
  42. Brown BM, Bowie JU, Sauer RT (1990) Arc repressor is tetrameric when bound to operator DNA. Biochemistry 29: 11189-11195.
  43. Bowie JU, Sauer RT (1989) Identifying determinants of folding and activity for a protein of unknown structure. Proc Natl Acad Sci U S A 86: 2152-2156.
  44. Zagorski MG, Bowie JU, Vershon aK, Sauer RT, Patel DJ (1989) NMR-studies of arc repressor mutants: Proton assignments, secondary structure, and long-range contacts for the thermostable proline-8-leucine variant of arc. Biochemistry 28: 9813-9825.
  45. Knight KL, Sauer RT (1989) DNA-binding specificity of the arc and mnt repressors is determined by a short region of N-terminal residues. Proc Natl Acad Sci U S A 86: 797-801.
  46. Vershon AK, Bowie JU, Karplus TM, Sauer RT (1986) Isolation and analysis of arc repressor mutants: Evidence for an unusual mechanism of DNA binding. Proteins 1: 302-311.
  47. Breg JN, van Opheusden JH, Burgering MJ, Boelens R, Kaptein R (1990) Structure of Arc repressor in solution: Evidence for a family of beta-sheet DNA-binding proteins. Nature 346: 586-589.
  48. Cheng XD, Balendiran K, Schildkraut I, Anderson JE (1994) Structure of PvuII endonuclease with cognate DNA. EMBO J 13: 3927-3935.
  49. Spyridaki A, Matzen C, Lanio T, Jeltsch A, Simoncsits A (2003) Structural and biochemical characterization of a new Mg2+ binding site near Tyr94 in the restriction endonuclease PvuII. J Mol Biol 331: 395-406.
  50. Horton JR, Nastri HG, Riggs PD, Cheng X (1998) Asp34 of PvuII endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis. J Mol Biol 284: 1491-1504.
  51. Syed RS, Reid SW, Li CW, Cheetham JC, Aoki KH (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395: 511-516.
  52. Dube S, Fisher JW, Powell JS (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J Biol Chem 263: 17516-17521.
  53. Narhi LO, Arakawa T, Aoki KH, Elmore R, Rohde MF (1991) The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem 266: 23022-23026.
  54. Dordal MS, Wang FF, Goldwasser E (1985) The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293-2299.
  55. Darling RJ, Kuchibhotla U, Glaesner W, Micanovic R, Witcher DR (2002) Glycosylation of erythropoietin affects receptor binding kinetics: Role of electrostatic interactions. Biochemistry 41: 14524-14531.
  56. Wen D, Boissel JP, Showers M, Ruch BC, Bunn HF (1994) Erythropoietin structure-function relationships. Identification of functionally important domains. J Biol Chem 269: 22839-22846.
  57. Narhi LO, Aoki KH, Philo JS, Arakawa T (1997) Changes in conformation and stability upon formation of complexes of erythropoietin (EPO) and soluble EPO receptor. J Prot Chem 16: 213-225.
  58. Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ (1998) NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol 5: 861-866.
  59. Elliott S, Lorenzini T, Chang D, Barzilay J, Delorme E (1997) Mapping of the active site of recombinant human erythropoietin. Blood 89: 493-502.
  60. Romero P, Obradovic Z, Kissinger C, Villafranca JE, Dunker AK (1997) Identifying disordered regions in proteins from amino acid sequences. Proc IEEE Int Conf Neural Networks 1: 90-95.
  61. Jones DT, Ward JJ (2003) Prediction of disordered regions in proteins from position specific score matrices. Proteins 53: 573-578.
  62. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ (2003) Protein disorder prediction: Implications for structural proteomics. Structure 11: 1453-1459.
  63. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21: 3369-3376.
  64. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31: 3701-3708.
  65. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg E, Man O (2005) FoldIndex(C): A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21: 3435-3438.
  66. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347: 827-839.
  67. Liu J, Rost B (2003) NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res 31: 3833-3835.
  68. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44: 12454-12470.
  69. Schlessinger A, Rost B (2005) Protein flexibility and rigidity predicted from sequence. Proteins 61: 115-126.
  70. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN (2000) The Protein Data Bank. Nucleic Acids Res 28: 235-242.
  71. Wang G, Dunbrack RL (2003) PISCES: A protein sequence culling server. Bioinformatics 19: 1589-1591.
  72. Altschul S, Madden T, Schaffer A, Zhang JH, Zhang Z (1998) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. FASEB J 12: A1326-A1326.
  73. Li WZ, Jaroszewski L, Godzik A (2002) Sequence clustering strategies improve remote homology recognitions while reducing search times. Prot Eng 15: 643-649.
  74. Li WZ, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17: 282-283.
  75. Li WZ, Jaroszewski L, Godzik A (2002) Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 18: 77-82.
  76. Henrick K, Thornton JM (1998) PQS: A protein quaternary structure file server. Trends Biochem Sci 23: 358-361.
  77. Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev Lett 79: 3090-3093.
  78. Flory PJ (1976) Statistical thermodynamics of random networks. Proc Math Phys Eng Sci 351: 351-380.
  79. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77: 1905-1908.
  80. Iglewicz B, Hoaglin DC (1993) . How to detect and handle outliersASQ Quality Press. Milwaukee (Wisconsin).
  81. Joachims T (1999) . Making large-scale SVM learning practical. In Scholkopf B, Burges C, Smola A (eds). Advances in kernel methods: Support vector learningMIT Press. Boston.
  82. Palliser CC, Parry DA (2001) Quantitative comparison of the ability of hydropathy scales to recognize surface beta-strands in proteins. Proteins 42: 243-255.
Copyright: © 2006 Gu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright 2014 © Jenny Gu, Michael Gribskov, Philip E Bourne. This pubcast is licensed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.